8 February 2023

Brain Tumor Segmentation (BraTS) Based on U-net

Computer Vision Project - Winter School 2023

Group 2

1 Introduction

2 Materials and Methods

- Data augmentation
- Model Design based on U-net
- Loss Function Design
- Learning Rate Design

3 Results

Imperial College London Teamwork for CV project

- Zhen Huang: Speaker, coding, report writing
- Jingyi Chai: Report writing, coding, PPT
- Le Su: Report writing, coding

Imperial College London 1 Introduction

2 Materials and Methods

Figure 1: Example Images in the Dataset.

- Using all the YES and 50 % NO as the data set
- 90 % of the data (3921 images) as the **training set**
- the remaining 10 % (434 images) as the validation set

2.1 Data Augmentation

Figure 2: Illustration of Data Augmentation.

- Using the **Albumentations**¹ to apply random data augmentation methods
- Crop / Rotate / Filp / Blur / Sharpen / Distortion

2.2 Model based on U-net

Figure 3: U-net Architecture²

U-shaped structure: **contracting path** and **expansive path**.

- The contracting path consists of 4 blocks, each block uses 2 effective convolutions and 1 Max Pooling downsampling.
- The expansive path has a similar structure but different sizes of Feature Map.

2.3 Loss Function Design

$$l((x, y), \theta) = -DiceScore(y_{true}, y_{pred}) + 0.1 \times \frac{\sum_{i=1}^{n} (y_{true} - y_{pred})^2}{n}$$

Penalty term

An MSE (Mean Square Error) penalty term can prevent overfitting, improve the generalization ability of the model, and make our optimization scheme stable and fast.

Regular Term	Dice Score	loU	Loss
\checkmark	0.9223	0.8565	-0.9221
×	0.9149	0.8442	-0.9149

Table 1: Results with and without regularization on the Val-set

2.4 Learning Rate Design

Figure 4: Graph of Exponential Annealing.

Warm-up

Choosing the Warm-up can make the learning rate smaller in the first few epochs or some steps of the training so that the model can gradually stabilize.

2.4 Learning Rate Design

Cosine Annealing

$$\eta_{t} = \eta_{\min} + \frac{1}{2} \left(\eta_{\max} - \eta_{\min} \right) \left(1 + \cos \left(\frac{T_{\mathsf{cur}}}{T_{\mathsf{max}}} \pi \right) \right)$$

where η_{\min} and η_{\max} represent ranges for the learning rate, with η_{\max} being set to the initial LR; T_{cur} represents the number of epochs that were run since the last restart.

Figure 5: Graph of Cosine Annealing.

Imperial College London 2.4 Learning Rate Design

Figure 6: Comparison of Cosine Annealing and Exponential Annealing.

2.4 Learning Rate Design

- The Exponential LR strategy makes the convergence fast and the oscillations small. Dice score 0.9210 and IoU 0.8543.
- The Cosine Annealing method steps out of the local optimum gives better results. Dice score 0.9308 and IoU 0.8710.

3 Results

Figure 7: The IoU, DiceScore, and Loss Curve in Training with Cosine Annealing.

3 Results

Set	Dice Score	loU	Loss
Train-set	0.9308	0.8710	-0.9306
Val-set	0.9277	0.8656	-0.9275

Table 2: Model performance on Train-set and Val-set

Test Results

Figure 8: Model performance on predicting using validation data.

Reference

- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125.
- Ronneberger, O., Fischer, P. and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention-miccai 2015: 18th international conference, munich, germany, october 5-9, 2015, proceedings, part iii 18. Springer, pp.234-241.
- Shorten, C. and Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep learning. Journal of big data, 6(1), pp.1–48.
- Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K., 2018. Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9, pp.611–629

Thanks for listening !

CV Project - Group2